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Abstract
We apply a nonlinear multigrid algorithm,named the full approximation storage
(FAS) scheme, to the Kohn–Sham equations for pseudopotential band structure
calculations. Traditionally, the nonlinear self-consistent problem is linearized
into successive fixed potential eigenvalue problems with potentials updated
between them. In the new method, the self-consistent problem is solved directly
with the FAS scheme. First, the error of self-consistence in density is calculated;
then, an FAS coarse grid problem is defined and solved; finally, a correction is
interpolated to the fine grid to modify the density. The eigenvalue problem is
integrated inside the FAS scheme, and evolves along with the self-consistent
problem within the FAS frame. Calculations are demonstrated for Si and Al.

1. Introduction

Much progress has been made for electron structure calculations of solids within the density
functional theory (DFT) [1, 2]. Various methods, such as molecular dynamics, conjugate-
gratitude optimization, and the linear scaling method,have been developed for efficient solution
of DFT based calculations within the pseudopotential approach [3–9]. Less efficient but more
accurate methods have also been developed within the full potential approach [10–13].

In recent years, real space or numerical grid based methods have been extensively
investigated [12, 14–22]. One of the motivations to explore the real space method is the
availability of advanced numerical algorithms developed in applied mathematics in recent
years, such as multigrid algorithms, especially the nonlinear multigrid algorithm [23, 24].
Multigrid algorithms have been found to be especially effective for problems converging slowly
with conventional methods.

The Kohn–Sham equations are usually solved by a self-consistent loop in which one
repeatedly solves fixed potential eigenvalue problems. The potentials are updated between the
eigenvalue problems. The eigenvalue problem is usually expansive to solve, so it is crucial
to keep the number of self-consistent iterations minimum in large scale electronic structural
calculations. Several methods for the self-consistent problem have been developed, such as the
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DIIS method (direct inversion of iterative subspace) [25, 26], Broyden’s method [27, 28], etc.
These methods sensitively depend on the initial guess of the potential. If the initial potential
is far away from convergence, then these methods may not work or converge slowly.

Brandt has proposed a nonlinear multigrid algorithm, named the full approximation storage
(FAS) scheme [23]. The algorithm deals with nonlinear problems as efficiently as linear
problems. With this FAS scheme, the entire problem of the nonlinear Kohn–Sham equations
may be solved in one shot, without the normal self-consistent loop. Costiner and Ta’asan
have tried to solve the Poisson equation and the eigenvalue problem simultaneously [15] with
the nonlinear FAS scheme. In realistic density functional theory based electronic structure
calculations, in addition to the Hartree potential which may be treated with the Poisson
equation, the exchange–correlation potential, which is a functional of the density, also needs
be updated simultaneously and self-consistently. This is a problem not treated in the work of
Costiner and Ta’asan.

In addition, in pseudopotential based electronic structure calculations, there are both
local and nonlocal parts of pseudopotential. Self-consistence is also required in the nonlocal
pseudopotentials. In the case of the nonlocal pseudopotentials, Briggs et al found that the
representation of the nonlocal pseudopotentials on the coarse grid is nontrivial [14]. Ono
and Hirose [29] recently proposed a scheme to construct the nonlocal pseudopotentials on the
coarse grid. The representation problem may thus be solved.

On the fine grid, one simply calculates the density as the sum of the occupied
eigenfunctions. On the coarse grid, the eigenfunctions are neither orthogonal to each other
nor normalized even when the original eigenfunctions on the fine grid are exact solutions. If
one still defines the density as the sum of the squares of the wavefunctions on the coarse grid
as on the fine grid, then it is likely that the total charge is not conserved to the number of
electrons. In solid state calculation, if the total charge is not equal to the number of electrons
in the periodic unit cell, then the total charge of the system diverges. The representation of the
density on the coarse grid is another delicate problem to be treated in the multigrid solution of
the Kohn–Sham equations.

In section 2.1, we give a brief introduction of the FAS multigrid algorithm for readers
who may not be familiar with this subject. Then in section 2.2, we develop our algorithm
by constructing the the nonlinear self-consistent problem based on the density and define the
density on the coarse grid. In section 2.3, we discuss the solution of the eigenvalue problem
within the FAS framework for density constructed in section 2.2. In section 2.4, we discuss
more technical details in constructing various potentials on the coarse grid, including the
Hartree potential and exchange–correlation potential, as well as the nonlocal pseudopotential.
In section 3, calculations are demonstrated for Si and Al. Section 4 is our conclusion.

2. Method

2.1. The multigrid FAS algorithm

Multigrid algorithms are developed based on observations of numerical experiments for
problems such as the Poisson equation,

�U = ρ. (1)

In the numerical method, the Laplace operator � is replaced by simple finite differences. U
is the potential to be solved while ρ here is a known charge distribution. Suppose there is an
approximate solution, u, such that

�u = ρ + d (2)

where d is the defect or the residual.
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Extensive numerical experiments show that simple relaxation methods, such as the Gauss–
Seidel method, are effective in reducing error in the first few iterations, while improvement
slows down afterwards. The errors left are mostly of long wavelength in character, and it was
found that they could be dumped more effectively on coarse grids. The multigrid idea has thus
been discovered and explored.

For the Poisson equation, to get the solution U from the approximation u, one may equally
well solve the difference v = u − U which satisfies the following equation:

�v = d. (3)

A well tested two-level multigrid algorithm for this equation is the following. First, we define
a coarse grid problem

�HvH = d H (4)

where H denotes the coarse grid. d H is a representation of d on the coarse grid, which
can be obtained by averaging or full weighting the function from the fine grid to the coarse
grid [30, 31]. The operation is named restriction and is denoted as I H

h and d H = I H
h d . �H

is the finite difference representation of the Laplace operator on the coarse grid H . An initial
approximation for vH may be obtained from v by restriction, vH

0 = I H
h v. The equation on the

coarse grid is then relaxed to improve vH . The difference vH − vH
0 is then used to improve

the approximate solution on the fine grid by interpolation,

v ← v + I h
H [vH − vH

0 ]. (5)

Here I h
H is a conventional interpolation operation from the coarse grid to the fine grid, for

example linear interpolation.
The operations can be recursively extended to yet coarser grids. By inclusion of multiple

levels, errors of all wavelengths may be rapidly damped in the fine grid function. In additional
to the effectiveness of the coarse grid in reducing the error of long wavelengths, the coarse grid
usually has fewer grid points than the fine grid, so the solution is accelerated with a multigrid
algorithm. A multigrid algorithm usually consists of the following steps: (1) initial iterations
on the finest level, (2) passage to the sequence of coarser levels where the coarse grid equations
are relaxed and (3) return to the finer scale via interpolation correction.

The above scheme applies only to linear problems. For nonlinear problems, it is difficult to
define an equation for v = u −U . In the FAS method, instead of the difference, v = u −U , the
desired functions themselves, u, are represented on coarse grids. The equations on a coarser
level, however, are modified by an additional term.

�H uH = ρH + τ H (6)

where

τ H = �H I H
h u − I H

h �u (7)

or

τ H = �H I H
h u − I H

h ρ − I H
h d (8)

by definition, τ H are calculated from the quantities available on the fine grid. After the solution
uH is relaxed, the fine grid solution u is updated by

u ← u + I h
H (u

H − uH
0 ) (9)

where the initial approximation on the coarse grid is uH
0 = I H

h u. For the Poisson equation
with fixed density, one can choose ρH = I H

h ρ. A desired principle in the construction of the
algorithm is that the coarse grid process should not modify the solution when it is already exact
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on the fine grid. For example, if d = 0, one reaches uH = I H
h u by construction; the correction

from the coarse grid is thus zero.
The FAS algorithm has also been applied to differential eigenvalue equations [24], which

are nonlinear. The basic steps are similar to that above for the Poisson equation. So a nonlinear
problem can be solved as efficiently as a linear problem with FAS.

2.2. The self-consistent problem

We proceed to the Kohn–Sham equations [2]

[− 1
2� + veff(r)− εi ]ψi(r) = 0 (10)

veff (r) = vc(r) + vxc[ρ(r)] +
∑

i

vion(r − Ri) (11)

ρ(r) =
occ∑

i

fi |ψi (r)|2 (12)

where vion(r − Ri) is the potential due to the ions, and fi is the occupation number of state i .
vc(r) is the Hartree potential

vc(r) =
∫

ρ(r′)
|r − r′| dr′, (13)

which is equivalent to Poisson’s equation:

�vc(r) = −4πρ(r). (14)

For the exchange–correlation potential vxc[ρ(r)], the local density approximation [32] has
long been the standard choice; more recently the generalized gradient approximations are
promoted [33]. In this paper we deal with the exchange–correlation potential in the local
density approximation [34]. In order to solve the above equations, one normally starts from
a trial input density, ρ(r), then computes the potentials and solves an eigenvalue problem.
An output density is then calculated from the eigenfunctions. To construct the self-consistent
problem, we use L to represent symbolically the entire process from an initial trial density
ρ(r), calculating the potentials and then solving the eigenvalue problem. As a measure of the
result of the whole process, the following quantity is calculated at the end:

L[ρ(r)] =
occ∑

i

fi |ψi(r)|2. (15)

Self-consistence or convergence then implies

L[ρ(r)] = ρ(r). (16)

If there is a defect in self-consistence, then

L[ρ(r)] = ρ(r) + d(r). (17)

According to FAS, one can formally define a coarse grid problem

L H [ρH (r)] = ρH (r) + τ H (r) (18)

with

τ H (r) = L H [I H
h ρ(r)] − I H

h L[ρ(r)]. (19)

Compare to the Poisson equation discussed in the above section; the operator� is now replaced
by L, and �H is replaced by L H . Here L H is similar to the operator L but defined on the
coarse grid. L H [ρH (r)] implies the whole process from a trial density ρH (r), first calculating



Nonlinear algorithm for the solution of the Kohn–Sham equations in solids 3705

the potentials on the coarse grid, and then solving the eigenvalue problem on the coarse grid (to
be defined in the next section). As a result, one can define a quantity from the output functions
ψH

i (r),

L H [ρH (r)] =
occ∑

i

fi |ψH
i (r)|2. (20)

The functions ψH
i (r) are usually neither orthogonal nor normalized. So the quantity

L H [ρH (r)] cannot be regarded simply as the density on the coarse grid. The quantity to
be regarded as the density on the coarse grid is ρH (r). In principle, it is the self-consistent
solution of equation (18). The Hartree potential and exchange–correlation potential on the
coarse grid will be calculated from ρH (r), instead of from L H [ρH (r)]. Our definition of the
density is thus different from that of Costiner and Ta’asan.

The above construction provides not only a definition of the density, but also a recursive
scheme to update the density on the coarse grid

ρH
j+1(r) = L H [ρH

j (r)] − τ H (r). (21)

Initial density may be chosen as ρH
0 (r) = I H

h ρ(r). On substitution of τ H (r), one gets
immediately ρH

1 (r) = I H
h L[ρ(r)], where L[ρ(r)] should be available on the fine grid. Self-

consistence on the coarse grid can be measured by the norm of the difference ρH
j (r)−ρH

j+1(r).
Once self-consistence converges on the coarse grid, correction is made to the fine grid

solution by

ρ(r) ← ρ(r) + I h
H [ρH (r)− ρH

0 (r)]. (22)

If the solution on the fine grid is already self-consistent, i.e. d(r) = 0, the recursive procedure
leads to ρH (r) = I H

h ρ(r), so the correction to the original solution ρ(r) is zero. The algorithm
is thus stationary at the exact solution, as desired.

Self-consistency on the fine grid implies ρH (r) = I H
h ρ(r) on the coarse grid, instead of

ρH (r) = L H [ρH (r)] as one might mistakenly infer from the fine grid. This definition thus
insures that the total density on the coarse grid is conserved; both the Poisson equation and the
exchange–correlation potential will thus behave properly. Costiner and Ta’asan [15] defined
L H [ρH (r)] as the density on the coarse grid. For the stable solution of the Poisson equation,
an additional global constant is imposed. Since they did not consider the exchange–correlation
potential, the side effect of their density on the exchange–correlation potential did not show
up in their test case.

Now let us compare the above algorithm with the traditional simple mixing scheme to
update a new trial density from a previous iteration,

ρ(r) ← ρ(r) + αd(r). (23)

The mixing parameter, α, is typically chosen in the range [0, 1]. In plane wave calculations,
it has been observed that for plane waves of long wavelengths, α should be chosen smaller
than that for the part of short wavelengths [35]. A smaller α means the input density changes
little, which may stabilize the iteration but slows down the convergence. The long wavelength
part is thus the difficult part in a self-consistent problem. The long wavelength part is better
represented on the coarse grid than on the fine grid. If we compare equation (23) with (22), we
see the difference in the correction term. In equation (23), the correction is a simple scaling
of the defect. The scaling parameter may be optimized by the DIIS technique [25]. There
is no guarantee that defects on different grid points deviate in the same direction and can be
adjusted by a single parameter. Equation (22) is obviously more powerful since it deals with
each coarse grid point individually.
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2.3. The eigenvalue problem

The operators L and L H consists of two major operations;one is the calculation of the potentials
and another is the eigenvalue problem. In this section we deal with the eigenvalue problem.

Suppose we have a set of approximate eigenfunctions ψi (r); their defects are

di(r) = [− 1
2� + veff(r)− εi ]ψi (r). (24)

Following the FAS scheme outlined in section 2.1, we can construct the coarse grid problem
as

[− 1
2�

H + vH
eff (r)− εi ]ψH

i (r) = τ H
i (r), (25)

with

τ H
i (r) = [− 1

2�
H + vH

eff(r)− εi ] Ī H
h ψi (r)− I H

h di(r). (26)

In the FAS scheme [24], one may define a different restriction operator, Ī H
h , on the eigenfunction

ψi , from the restriction operator, I H
h , on the defect. To simplify the calculation, we require

that Ī H
h ψi(r) be normalized. This can be done by simple scaling after normal restriction

operation. A normalized eigenfunction on the coarse grid implies an equal contribution to one
electron charge in the measure L H [ρH (r)]. In the scheme developed by Brandt et al for the
fixed potential differential eigenvalue problem, normalization is not necessary as long as one
tracks the norm of each eigenfunction before restriction, and restores it afterward [24]. With
normalization, the tracking of the norm for each eigenfunction is simplified, while its side
effect on the solution of the eigenvalue problem is negligible.

With substitution of τ H , equation (25) can also be written as

[− 1
2�

H + vH
eff (r)− εi ][ψ

H
i (r)− Ī H

h ψi (r)] = −I H
h di(r). (27)

The coarse grid equation thus seeks a solution of the differenceψH
i (r)− Ī H

h ψi (r) corresponding
to a defect I H

h di(r) but with opposite sign. To reduce the defect in the equation (24), the new
solution on the fine grid should be constructed as

ψi (r) ← ψi (r) + I h
H [ψH

i (r)− Ī H
h ψi (r)]. (28)

At convergence, i.e. di(r) = 0, with an iterative relaxation procedure, one has ψH
i (r) =

Ī H
h ψi (r). So the exact solution is stationary by construction.

The potentials vH
eff(r) are to be defined. Any nonsingular potential defined on the coarse

grid is legitimate at the exact solution. This is guaranteed by the construction. However,
when the solution is approximate, the better one defines the potential on the coarse grid the
faster the solution converges. For a fixed potential problem, one may define the potential on
the coarse grid as the restriction from that on the fine grid [13, 24]. For a self-consistent
problem, it is natural to calculate a potential directly according to the density available on the
coarse grid. So the eigenfunction can be relaxed with potentials already updated on the coarse
grid. Self-consistence is thus accelerated within the FAS solution process for the eigenvalue
problem.

Self-consistence on the coarse grid converges much faster than that on the fine grid due to
the specific form of the coarse grid equations. The error in the potential affects the difference
ψH

i (r) − Ī H
h ψi (r) rather than ψH

i (r) itself. They may differ by orders of magnitude after
a reasonable initialization. This will significantly reduce error in the eigenfunctions ψH

i (r),
which may lead to charge sloshing. Our test calculations show that one or two updates of
potentials are sufficient to raise self-consistence significantly on the coarse grid.

For relaxation, we use the Gauss–Seidel method. For the Kohn–Sham eigenvalue
equations, it implies the following update:

ψi (r) ← ψi (r)− di(r)
diag + veff(r)− εi

(29)
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on the fine grid, and

ψH
i (r) ← ψH

i (r)−
d H

i (r)

diagH + vH
eff (r)− εi

(30)

on the coarse grid with d H
i (r) = [− 1

2�
H + vH

eff(r)− εi ]ψH
i (r)− τ H

i (r). diag and diagH come
from the diagonal part of the kinetic operator. For example, the kinetic operator is − 1

2� on

the fine grid. If one uses d2

dx2 f (i) = 1/(h2)[ f (i − 1) + f (i + 1)− 2 f (i)] in each direction of
the axes, then diag = 3/h2 in 3d.

After the Gauss–Seidel step, the defect at point i becomes zero. This is the ideal solution.
However, a new defect may come up when the next grid point, for example i + 1, is updated.
So the grid usually needs to be swept a few times (three in the test) to smooth down the error
sufficiently. One can also use other methods for relaxation, such as the Jacobi method [31], the
Kaczmarz method [37], DIIS [25, 26], and conjugate gradient optimization. The Gauss–Seidel
method is both simple enough and efficient.

To prevent the eigenfunctions from collapsing onto each other, the Gram–Schmidt
orthogonal procedure follows.

ψi ← ψi −
∑

j<i

〈ψ j , ψi 〉
〈ψ j , ψ j 〉ψ j . (31)

The Gram–Schmidt procedure is a sequential method; it can be implemented immediately
after each eigenfunction being relaxed. The later eigenfunction is always orthogonalized to
newly updated eigenfunctions. The orthogonal condition on the coarse grid is imposed on the
difference ψH

i − Ī H
h ψi rather than ψH

i itself,

ψH
i ← ψH

i −
∑

j<i

〈ψH
j , ψ

H
i − Ī H

h ψi 〉
〈ψH

j , ψ
H
j 〉 ψH

j . (32)

This condition ensures that the solution will be stationary when it is exact. Normalization
is immediately applied after orthogonalization for each eigenfunction, which has the effect
to suppresses possible divergence due to relaxation [19]. The denominators in the above
equations may be replaced by 〈ψ j , ψ j 〉 = 1 and 〈ψH

j , ψ
H
j 〉 = 1, because when one updates

the eigenfunction ψi , ψ j with j < i has already been normalized.
The eigenvalues are updated by the Rayleigh quotient method, which globally minimizes

the residues in the least-squares sense [36]. In order to avoid round-off error in processing
small numbers, the following formula is used:

εi ← εi +
〈ζi , ηi 〉
〈ζi , ζi〉 (33)

where

ζi = ψH
i (r) + I H

h ψi (r)− Ī H
h ψi (r)

ηi = [− 1
2�

H + vH
eff(r)− εi ]ψH

i (r)− τ H
i (r)

(34)

on the coarse grid, and ζi = ψi (r), ηi = di(r) on the fine grid.
Relaxation, orthonormalization and Rayleigh quotient calculation are the basic operations

in our algorithm for the eigenvalue problem. One can solve the eigenvalue problem based
on these operations alone by iterations on the fine grid. However, the multigrid algorithm
considerably speeds up the solution.

Our algorithm for the eigenvalue problem is based on the ideas developed by Brandt et al
[24]. Costiner and Ta’asan [15] developed their own method for the eigenvalue problem. They
apply FAS in the Rayleigh–Ritz subspace of the eigenvalue problem, resulting in a generalized
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eigenvalue problem on the coarse grid. Since there are mixing and permutation of eigenvectors
during matrix diagonalization on the coarse grid, tracking of eigenvectors between the fine
grid and the coarse grid becomes complicated. Our algorithm is simpler than their method in
tracking the eigenfunctions between the coarse grid and fine grid. As found in the paper [24],
it is enough to implement the Rayleigh–Ritz procedure or subspace rotation [7] on the fine
grid after the FAS procedure.

2.4. The potentials

In this section, we discuss the calculation of the various parts of the potential in realistic
calculations.

In the numerical method, the Hartree potential is calculated more efficiently by the Poisson
equation than computing the integral of equation (13). For the integral one needs to sum over
all grid points, while in the Poisson equation using a differential operator one only needs a few
local grid points to update the potential at each grid point.

Since the density changes on the coarse grid, we use the FAS scheme (see section 2.1)
to solve the Poisson equation. In the normal Poisson equation with the density fixed, one
takes ρH = I H

h ρ. In the self-consistent problem, the density on the coarse grid is taken from
ρH (r) = L H [ρH (r)] − τ H (r). We use the Gauss–Seidel method for the relaxation of the
Poisson equation.

For the solution process to be stable, it is desirable that the total charge entering the
Poisson equation be zero. This is realized along with the calculation of ionic potential with
the Ewald technique [38]. In this technique, a negative charge distribution, usually a Gaussian
distribution,

ρi (r) = Z√
π3r3

c

e−(r/rc )
2

(35)

is added to each ion. The potential from each Gaussian density has the form of an error function
divided by r [39].

vi (r) = Z erf(r/rc)

r
. (36)

This potential has an asymptotic tail that compensates the long range Coulomb tails from the
ion. The screened ionic potential is then short ranged. The calculation of the crystal ionic
potential thus extends only up to the atoms in the neighbouring cells.

To compensate the artificial Gaussian charges added to the ions, the total charge of opposite
sign from the Gaussian distributions is added to the electronic charge. The total charge from
both the Gaussian charges and the electronic charge in the Poisson equation is then zero. The
Poisson equation to be solved is �Vc(r) = −4πρtot(r), with ρtot(r) = ρ(r)− ∑

i ρi .
The choice of Gaussian screening parameter, rc, is quite empirical. Since we use

Kleinman–Bylander type separable pseudopotentials [40, 41], vion(r −Ri) = VL + VNL, where
VL is the long ranged local part of the pseudopotential and VNL is the short ranged nonlocal
part of the pseudopotential. We fix rc such that the screened local potential, VL + vi , is zero
at the nuclei. The value of vi at the nuclei is 2Z√

πrc
. The result for Si is shown in figure 1.

The advantage of this choice is that the screened potential, VL + vi , is zero at both origin
and distance, so it becomes much smoother than other methods, such as that in the SIESTA
code [9]. The smoothness of the potential improves the accuracy of the representation on the
coarse grid by restriction.

To represent the nonlocal pseudopotential on a grid, filtering techniques have been
developed to remove the high frequency components in the pseudopotentials [14, 42].
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Figure 1. Ionic potentials for Si. The solid line shows the screened local potential and the broken
line shows the nonlocal pseudopotential (l = 0 is the local part).

Ono and Hirose [29] recently proposed a double-grid scheme to obtain accurate nonlocal
pseudopotentials on a grid. The nonlocal pseudopotential projector on a given grid is restricted
by full weighting from that prepared on a much finer grid. For example, for the pseudopotential
projector on a grid h, one may prepare the projector on a finer grid with spacing h/2, and then
restrict it to the grid h. The projector on a coarse grid of spacing H = 2h can be restricted
from the projector on the grid h. The nonlocal pseudopotential operator on the coarse grid is

V H
NL(r) =

∑

lm

|(�Vlφlm)
H 〉〈(�Vlφlm)

H |
〈φlm |�Vl |φlm〉 . (37)

Since the projectors �Vlφlm , (�Vlφlm)
H are short ranged in space, we need only take into

account those grid points that are within a cut-off radius around each ion.
In solid state calculations, the eigenfunctions take the Bloch form ψk(r) = e(−ik·r)uk(r)

where uk(r) is periodic. The operation of the nonlocal pseudopotential operator V H
NL(r) on

ψk(r) can be reduced as

VNLψk(r) =
∑

lm

|�Vlφlm〉〈�Vlφlm |e−ik·ruk(r)〉
〈φlm |�Vl|φlm〉

=
∑

lm

|�Vlφlm〉〈�Vlφlmeik·r|uk(r)〉
〈φlm |�Vl|φlm〉

=
∑

lm

|�Vlφlmeik·r〉〈�Vlφlm eik·r|uk(r)〉
〈φlm |�Vl|φlm〉 e−ik·r

= [V ′
NLuk(r)]e−ik·r. (38)

The equations to be solved for uk(r) then take the form

[− 1
2� + ik · ∇ + 1

2 |k|2 + Veff(r)− εk]uk(r) = 0 (39)

with Veff(r) = vxc[ρ(r)] + Vc(r)+ VcLoc(r)+ V ′
NL(r), where VcLoc is the sum of local potentials

VL +vi from atoms up to the neighbouring cells. Vc(r) comes from solving the Poisson equation
�Vc(r) = −4πρtot(r). The band index at each k point is implied here.
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The equation on the coarse grid can be written down similarly to equation (25).

[− 1
2�

H + ik · ∇H + 1
2 |k|2 + V H

eff(r)− εk]uH
k (r) = τ H

k (r) (40)

with

τ H
k (r) = [− 1

2�
H + ik · ∇H + 1

2 |k|2 + V H
eff(r)− εk] Ī H

h uk(r)− I H
h dk(r) (41)

where dk(r) is the defect on the fine grid. V H
eff(r) = vH

xc[ρH (r)] + V H
c (r) + V H

cLoc(r) + V ′H
NL (r).

vH
xc[ρH (r)] can be calculated directly from the density ρH (r). V H

c (r) comes from the Poisson
equation. V H

cLoc(r) is the restriction of VcLoc(r). V ′H
NL (r) is similar to V ′

NL(r) except the
replacement of (�Vlφlm)

H for �Vlφlm .
For the calculation of the nonlocal pseudopotential, one needs to first prepare the integral

〈�Vlφlm eik·r|uk(r)〉. This integral is treated as a constant during relaxation. Relaxation is
followed by orthogonalization and normalization. The nonlocal pseudopotentials are updated
after the normalization, as is the eigenvalue. Since one would repeat relaxation of the Kohn–
Sham equations a few times, the nonlocal pseudopotential is updated during this cycle to
improve self-consistence.

3. Calculations

We have elaborated enough detail for the solution of the Kohn–Sham equations. We now
outline the major steps with the multigrid method proposed above.

There can be different ways to prepare the initial approximation. Here for the initial
density we choose a uniform constant distribution normalized to the number of electrons. The
potentials are then calculated on the fine grid and the total potential is restricted to the coarse
grid. Each eigenfunction is first initialized with random numbers on the coarse grid and relaxed.
The eigenfunctions are then interpolated to the fine grid and normalized. A new density on the
fine grid is then calculated and potentials are updated. Each eigenfunction is then sequentially
improved by a fixed potential FAS algorithm, with a Ritz procedure at the end. The procedures
are well described in the paper for the fixed potential eigenvalue problem [24].

From here we begin the self-consistent FAS cycle presented in the present paper. We
follow a general paradigm of the multigrid method, a two-level V-cycle, i.e. from the fine grid
to the coarse grid and then from the coarse grid to the fine grid.

(1) On the fine grid, we calculate the density from the eigenfunction and then potentials, then
solve the eigenvalue problem. Those procedures are repeated three times to smooth the
short wavelength error in self-consistence on the fine grid.

(2) Next, we apply the fixed potential eigenvalue algorithm [24], so that defects in self-
consistence can be estimated. Convergence is checked here to see whether further
calculation should be considered.

(3) If the convergence is not reached, we restrict the density to coarse grid and calculate the
potentials there. Then eigenfunctions are restricted from the fine grid and relaxed one
after another, while each later eigenfunction is orthogonalized to all the newly updated
eigenfunctions by the Gram–Schmidt procedure. After all the eigenvectors finish, the
density is calculated again and self-consistence is checked to decide whether or not to
proceed with another iteration on the coarse grid.

(4) On returning to the fine grid, we interpolate the correction in density from the coarse grid
to the fine grid, then update the potentials on the fine grid. The eigenfunctions on the fine
grid are then interpolated and followed by a relaxation and Gram–Schmidt procedure. We
then go back to step (1).
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(a)

(b)

Figure 2. Convergence of (a) density and (b) eigenvalues with respect to the number of FAS
V-cycles. For the self-consistent eigenvalue problem, the density and the eigenfunctions converge
simultaneously.

Figure 2 shows the convergence behaviour for Si. The calculation is done with a cubic
cell of eight Si atoms with a lattice constant 5.38 Å. The fine grid has 16 × 16 × 16 points.
The convergence is based on the norm of the residues. The convergence in eigenvalues is
represented by the lowest eigenfunction, the behaviour of other eigenfunctions is slightly
different due to additional orthogonal constraints. For the self-consistent problem, the density
and the eigenvalues converge simultaneously in this algorithm. The potential used in the fixed
potential case is based on a uniform charge density. Since the algorithm is iterative in nature,
it is normal to have a few FAS iterations even for the fixed potential problem. We see that
the self-consistent problem may not be necessarily harder to converge than a fixed potential
eigenvalue problem with FAS.

To calculate the density of states (DOS), a set of 56 special k-points is generated with
the Monkhorst–Pack scheme [43] from a mesh of 10 × 10 × 10 in the Brillouin zone. The
DOS calculated with the smearing method of Methfessel and Paxton [44] (W = 0.6 eV and
N = 2) is shown in figure 3, along with that calculated from a plane wave code using the
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Figure 3. Density of states for Si.

Table 1. Convergence behaviour in the sequential-update method.

Iteration Residual in self-consistence

1 3.602 006 × 10−4

2 3.184 831 × 10−5

3 4.141 065 × 10−5

4 5.706 036 × 10−5

5 7.890 775 × 10−5

6 1.092 712 × 10−4

same pseudopotentials with a cut-off energy Ecut = 5 au. The DOS from the real space
method agrees well with that of plane wave calculations up to a shift in energy. In plane wave
calculations, the eigenvalues are shifted by the G = 0 term [45]. In the real space method,
the eigenvalues are solved up to a constant by the differential Poisson equation under periodic
conditions. The calculation with many k-points converges slightly faster than that with a single
�-point.

For calculation of a semiconductor or an insulator, the occupation number fn,k can be fixed
in advance. In the case of a metal, there may be several bands with very close or degenerate
energies at the Fermi level. If occupation switches from one eigenfunction to another at the
Fermi level, the density will fluctuate dramatically. In this case, we sample the occupation
according to a Fermi distribution with a finite temperature. The occupation numbers are treated
as constant throughout the FAS cycle and updated only at the begin of the FAS cycle. For
fcc Al with a lattice constant 7.525 a0, we can get convergence in self-consistence in density
1.347 534 × 10−3 after initialization, and 3.373 354 × 10−4 after the first three self-consistent
iterations on the fine grid. From here we make two calculations to compare the sequential-
update method and the present nonlinear method. In the sequential-update method, the
eigenvalue problem and the update of the potentials are repeated sequentially. The eigenvalue
problem is solved with the fixed potential algorithm [24]. The result is shown in table 1. We
see that the simple sequential-update method converges slowly and fluctuates. However, with
the nonlinear procedure to update the density, self-consistence reaches 3.471 7692 × 10−6 in
one FAS cycle, demonstrating the effectiveness of the algorithm.
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Figure 4. Total energy versus lattice constant for Al.

Total energy is an important quantity from a DFT calculation. In this algorithm, the
total energy need only be calculated once at convergence. Using the Laplace transform,
1
r = π

1
2

∫ ∞
0 e−sr2

s
1
2 ds and the product property of two Gaussian functions, one can derive the

formula for the total energy

E =
∑

n,k

fn,k〈un,k| − 1
2� + ik · ∇ + 1

2 |k|2|un,k〉

+
∑

n,k,lm

fn,k
|〈un,k(r)|�Vlφlmeik·r〉|2

〈φlm |�Vl |φlm〉 + Exc[ρ(r)]

+ 1
2

∫
dr ρtot(r)Vc(r) +

∫
dr VcLoc(r)ρ(r)

+
1

2

∑

i �= j

Zi Z j

Ri j
erfc

(
Ri j√

r2
c,i + r2

c, j

)
− 1√

2π

∑

i

Z 2
i

rc,i
. (42)

Here fn,k is the occupation number for the band n and the k point. The index lm is the angular
moment. Summation over all atoms in the unit cell is implied in the calculation of the nonlocal
potential energy, even though the potential from the Poisson equation is solved up to a constant
under periodic boundary conditions. The total energy, however, is not affected by the constant
because the total charge from ρtot(r) is zero. Ri j is the distance between ion i and j . Zi is the
ion charge and rc,i is the parameter of the Gaussian screening charge for atom i . In

∑
i �= j , the

index i is taken in the unit cell and j up to the neighbouring cells. The index i in the last term
runs over atoms in the unit cell.

The variation of total energy with the lattice constant for Al is displayed in figure 4.
The calculations are based on a real space mesh of 16 × 16 × 16 and a set of 56 special
k-points. The total energy reaches a minimum −8.3876 au (−2.0969 au/atom) at the lattice
constant 7.525 a0. The atomic total energy is −1.946 au, which results in a cohesive energy
of 4.1 eV/atom. The experimental result is 3.32 eV/atom and the theoretical result with the
muffin-tin approximation is 3.84 eV/atom [46].
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4. Conclusion

The self-consistent problem is usually linearized into successive eigenvalue problems with a
potential update in between. In the present paper, a nonlinear FAS algorithm is framed for
the self-consistent problem. First, the error of self-consistence in density is calculated, and
then an FAS coarse grid problem is defined and solved; finally, a correction is interpolated to
the fine grid to modify the density. The eigenvalue problem and update of the potentials are
integrated into the same FAS frame. Within this FAS frame, the eigenvalue problem evolves
simultaneously along with the self-consistent problem. For example, as FAS returns to the
fine grid, the eigenvalue problem will be improved with the density already updated.

The nonlinear FAS algorithm for the self-consistent problem avoids some problems
intrinsic to the sequential-update method, such as fluctuation. The ideas developed in this
paper may suggest a new way to solve the self-consistent problem in many other areas.
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